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Abstract

Let X be a Riemann surface equipped with a projective strugtned £ a theta characteristic
on X, or in other words. is a holomorphic line bundle equipped with a holomorphic isomorphism
with the holomorphic cotangent bundizy. The complement of the zero section in the total space
of the line bundleL has a natural holomorphic symplectic structure, and ugjrigis symplectic
structure has a canonical quantization. Using this quantization, holomorphic differential operators
on X are constructed. The main result is the construction of a canonical isomorphism

. L k .
HO(X, lef];((;c@], £®(l+]+2k))) ~ @OHO(X, L& ® Q;(?l)’
1=

i,j€Z,n>0,provided ¢ [-2(k — 1), 0].
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1. Introduction

Let X be a Riemann surface, not necessarily compact or of finite type. Fix a holomorphic
line bundleC overX together with a holomorphic isomorphism&®? with the holomorphic
cotangent bundI€y. In other words £ is a theta characteristic ox.

A projective structure orX is a covering ofX by holomorphic coordinate functions
such that all the transition functions are Mébius transformations. (Mébius transformations
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are functions of the form — (az+ b)/(cz+ d),a,b,c,d € C with ad — bc = 1;

so the group defined by all M6bius transformations is identified with@S8L).) Every
Riemann surface admits a projective structure, and the space of all projective structures on
X is an affine space foH?(X, !2%2). Given a projective structure oK, using the theta
characteristicC the transition functions can be lifted from the Mdbius group BSIC) to

SL(2, C) satisfying the cocycle condition (s&ection 2.%or the details).

Let Z denote the complex surface defined by the complement of the zero section in the
total space of the line bundlé. The complex manifold has a holomorphic symplectic
structure induced by the standard symplectic form on the total spaegg.dflore precisely,
the symplectic structure of is the pullback, using the map+— v ® v, of the standard
symplectic form on the total space 9.

In[3] itwas shown that for each projective structurelothere is a canonically associated
quantization of this symplectic surface Let H (Z) denote the space of all (locally defined)
holomorphic functions ot£. We recall that a quantization is an associative multiplication
operation

* %(Z)%’H(Z) — H(D)[[A]]

with i being a formal parameter, such that foe= 0 it is the pointwise product o#.(2),
and the derivative a@t = 0 of this % operation is given by the Poisson structure?¢z)
defined by the symplectic form (s&ection 2.%or the details).

Fix a projective structurg on X. Consequently, we have a quantization of the symplectic
variety Z.

A holomorphic section

s e HO(X, £®

defines a holomorphic function afj which will be denoted by. For anyz € Z projecting
tox € X, if s(x) = cZ®, thenrl(z) = c (seeSection 3. For another holomorphic section
t € HO(X, £L®), let

o
Lxl =) W'
k=0
be the quantization product.
We observe that for any > 0, there is a (unique) section
uec HO(X, E@(i+j+2k))

such thatl;, = ¥, (Lemma 3.).
As a consequence dfemma 3.1 fixing the sections we get a unique holomorphic
differential operator orX

SE(j) € HO(X, Diff 4 (L8, L2720y
which is determined by the following two conditions:

1. for any section of £®/, its evaluations*()(s) coincides with the section given by
Lemma 3.1
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2. for any open subsédf of X equipped with the projective structure inducedihythe
differential operatos* ( j),; obtained by substituting by U coincides with the restriction
of S¥(j) to U (that is,S* () is a local operator).

The symbolr(S¥()) of the differential operatos* () is

, k
o(S5(j) = (’“}‘{_1) (g) s

(seeLemma 4.).
UsingLemma 4.linductively, it is possible, for suitable valuesiaindk, to decompose,
in a canonical fashion, a differential operator

De HO(X, Diﬁ];((ﬁ@j, E@(H—j-ﬁ-Zk)))

into a sum ofk + 1 differential operators of order, Q, .. ., k. Note that in general only the
symbol of a differential operator makes sense; subsequent order terms do not make sense
in general.

More precisely, ifi ¢ [-2(k — 1), O], we have an isomorphism

k [ . . .
EOHO(X’ L% ® le) N HO(X’ Diff’§((£®f, £®(z+/+2k)))

thatsends any € HO(X, L&' ® £2%), where! € [0, 4], to the differential operatas’—( )

given byLemma 4.1(Theorem 5.1 Furthermore, the image #1°(X, L% @ 2%'), by the
above homomorphism, is contained in

for eachl € [0, k]. In other words, the above decomposition of a differential opera-
tor into sections ofHO(X, L% ® 2¢),1 € [0, k], is compatible with the filtration of
HO(X, Diff 41 (£®], £®+/+20)) defined by the lower order differential operators.

The space of all differential operators of orddrom £®7 to £8¢+/+20 has a canonical
filtration which is given by operators of ordewith [ € [0, k]. However,Theorem 5.5kays
that after choosing a projective structureXnthis filtration of differential operators has a
natural semisimplification.

This decomposition extends to differential operatordio® £&/, whereW is a vector
bundle overX equipped with a holomorphic connection ($&emark 5.2

2. Preliminaries
2.1. Projective structure
Take a complex vector spadé of dimension 2. LefP(V) denote the projective line

consisting of all one-dimensional subspace¥ of et SL(V) denote the group of all auto-
morphisms ofV’ that act trivially on the linex2V. The group of all automorphisms Bt V)
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coincides with PSLV) := SL(V)/(Z/27Z), whereZ/2Z is the center of SLV) consisting
of £1dy. Note that choosing a basis Bf the Mébius group (the group of fractional linear
transformations of the Riemann sphé}e: CP?) gets identified with PS(V).

Let X be a Riemann surface. W notassumeX to be compact or of finite type. By
a holomorphic coordinate functioon X we will mean a pair of the forniU, ¢), where
U C X is some open subset and

¢:U— PV

a biholomorphism ot/ with the image ofp. By aholomorphic atla®on X we will mean a
collection of holomorphic coordinate functiofd/;, ¢;)}ic; such that

Jui=x

iel
Let {(U;, ¢;)}ic; be a holomorphic atlas satisfying the condition that for each(pajy €
I'xIthereisanelemerdt ; € Aut(P(V)) such that the transition functi(z¢r,|o¢;1 coincides
with the restriction off; ; to ¢;(U; N Uj).

Another holomorphic atlaU, ¢ )} je; satisfying this condition on transition functions
is calledequivalentto {(U;, ¢;)}ic; if the above condition on transition functions holds
also for the unior{(Uy, ¢x)}kerus- A projective structureon X is an equivalence class of
holomorphic atlases satisfying the above condition on transition fundi#ns

For our purpose we need a slightly refined structure, which we will call@sdtructure.

A SL(V) structure onX is defined by giving a holomorphic atlagU;, ¢;)}ic; together
with A; » € SL(V) for each(i, i) € I x I such that

1. the transition functiom; o ¢]T1 coincides with the restriction ip;(U; N U;) of the map
Aij P(V) — P(V);

2. Ajj= A;l-l;

3. A jAj kAL = Idy.

The last two conditions mean that the collectfon ;} form a one-cocycle. Another such
data

{Wj, dpYjes: {Ajitjrer}

satisfying the three conditions is calleduivalento it if their union

{Ui, dd)}ierus, (Ai )i jerus}

is apart of a data satisfying the above three conditions. A(BLstructureon X is an
equivalence class of such data.

Given a SI(V) structurep on X, any holomorphic coordinate function occurring in any
atlas in the equivalence class will be callmmpatiblewith p. Note thaty induces a SLV)
structure on any open subdétof X in an obvious way.

Clearly, a SI(V) structure gives a projective structure. The difference between a projective
structure and a SIV) structure is the following. A SUV) structure is a projective structure
together with the choice oftheta characteristi¢sed9]). We recall that a theta characteristic
is a holomorphic line bundl€ over X together with a holomorphic isomorphism 6#2
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with the holomorphic cotangent bundy . Any Riemann surface has a theta characteristic.

If each connected componentXfs noncompact, then any line bundle ov&rin particular

2%, is holomorphically trivializable. For a compact connected Riemann surface of genus
g, there are exactly? distinct theta characteristics.

We will show below how a S[V) structure defined above gives a theta characteristic.
Any Riemann surface admits a projective structure. The uniformization theorem says that
the universal cover of a connected Riemann surfatebiholomorphic to eithe€ or CP*
or the upper half planél. Since the group of all automorphisms of each of these three
Riemann surfaces is contained in the Mdbius grdupgets a natural projective structure.
The space of all projective structures Bris an affine space fal(Y, Q?z), the space of
holomorphic quadratic differentials dn

Let Lo denote the tautological line bundi#yy, (—1) overP(V). Note thatLg)®2 is canon-
ically identified with 2py, ® ¢, where¢ is the trivial line bundle oveP(V) with fiber
A2V. Indeed, for any one-dimensional subspéce P(V) of V, we haveLols = & and
2pyls = Hom(V/g, £). Note that the action of SIV) on P(V) lifts to Lo. Indeed, the
standard action of SIV) on V gives an action of S{V) on Lo.

We fix, once and for all, a nonzero elemént A2V* \ {0}. So6 defines a symplectic
structure or. Usinge, the line bundIeLg92 gets identified with2p(y,. Indeed, for any line
I C V, the fiber of©2py, over the pointirP(V) representingis canonically identified with
Hom(V/1, ). Since HontV/ 1, 1) = I®2 @ A2V*, the nonzero vectat identifiesA2V* with
C, thus identifyingL$? with £2p(y).

We will now show how a SLV) structure defined above gives a theta characteristic. Let
X be equipped with a SIV) structurep. Take a datd{(U;, ¢;)}ic1, {Ai j}i jer}, as in the
definition of a SI(V) structure, in the equivalence class fotor each € I, consider the
line bundle¢? Lo on U;. Since the action S{V) on P(V) lifts to Lo, we can gluap; Lo
andquLo over U; N U; using the clutching function given by the actionaf; € SL(V).
Since{A4; ;} form a one-cocycle, these locally defined line bundles patch together com-
patibly to define a line bundle oveX. Let £ denote the line bundle ovex obtained
this way.

The isomorphism o’rLg92 with £2p(y, pulls back to an isomorphism Qf;*L%Z’Z with
@7 $2p(v) overU;. Now, the differentialig; gives an isomorphism af; $2p(y, with 2x|y;.
Using this and the isomorphisgf Lo = £L]|y; obtained from the construction gfwe getan
isomorphism ofC®2|U,. with 2x|y.. Itis evident from the construction that if we consider
the similar isomorphism oveY;, then the two isomorphisms @®2 with 2y overU; N U;j
coincide. In other words, we have constructed an isomorphism

v L% 5 Q2 (2.1)

overX. In particular,C is a theta characteristic. It should be emphasized4tdgpends on
the SL(V) structurep.
Let O denote the image of the zero sectionfofLet

Z:=L\Or (2.2)

be the complement of the zero section in the total spade 8b Z is a complex manifold
of dimension 2.
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Let
pxi.Qx—)X

denote the natural projection from the total space of the holomorphic cotangent bundle.
The complex surfac&x has a natural holomorphic symplectic form. Indegll2x has a
tautological section which is defined as follows. Upk : 72x — p% TXbe the differential

of the mappyx, whereT2x (respectively,TX) is the holomorphic tangent bundle &fx
(respectivelyX). Consider the homomorphism

dpx)* : px2x — 2gy.

Note that the line bundlg’ 22x over the total space a2y has a tautological section that
ends any point € 2y to z itself. The image of this section by the above homomorphism
(dpx)* defines a holomorphic one-forwt on the total space a®x. The exterior derivative

w1 = do’ (2.3)

is a holomorphic symplectic form of?x. This symplectic formw; on the total space of
£2x can also be described using coordinate charts as followg/ letX be an open set and
go : U — C aholomorphic coordinate function @ The coordinate function defines a
trivialization of the line bundlé2x overU. The trivialization sends the constant function 1 to
the sectiordgp of the line bundle2x overU. Using this trivialization we get a holomorphic
coordinate functior{p, ¢) on the open subse*.i}l(U) C 2x, whereq = go o py; for any
z € p}l(U), the evaluatiorp(z) € C satisfies the identity = p(z) dop(px(z)). Now it is
easy to see that the restrictionﬁgl(U) of the holomorphic one-form’ (defined earlier)
coincides withp dg. Therefore, fron{2.3)we conclude thab; = dp A dq overpgl(U).
ConsiderZ defined in(2.2). Let

Wo:Z— Qx (2.4)

be the map that sends anyo ¥(z ® z), where¥ is the homomorphism defined (&.1).
Clearly, ¥y is a degree two étale covering of its image. The pull back

wi= %(wgwl), (2.5)

wherew; is defined in(2.3), is a symplectic form oI£.

In [3] it was shown that given a §I) structure onX, there is a natural quantization of
Z equipped with the symplectic structuse We will briefly recall the construction of this
quantization. First we will recall the definition of a quantization.

2.2. Quantization of a holomorphic symplectic form

Let M be a complex manifold. Its holomorphic tangent bundle will be denotetiNby
Let ® be a holomorphic symplectic form a@d. In other words@ is ad-closed holomorphic
two-form on M with the property that for any point € M, the skew-symmetric bilinear
form on the holomorphic tangent spafeV! defined by®(x) is nondegenerate.

Lett : T*M — TM be the isomorphism defined by the nondegenerate f@rnso
7 1(v)(w) = O(w, v), wherev, w € T, M andx € M.
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Let f andg be two holomorphic functions defined on some open subisgtM. Sending
the pair(f, g) to ©(z(df), 7(dg)) defines eholomorphic Poisson structuren the space of
all locally defined holomorphic functions avi. In other words, the pairing defined by

(f ) = {f g} = O(z(dh), (dg) (2.6)

is anticommutative, the Jacobi identity is valid (that is, it defines a Lie algebra structure),
and satisfies the Leibniz identity that sd¥g f1} = g{f. f1} + flg, f1}-

Let H(M) denote the algebra of all (locally defined) holomorphic functiong/riet
A(M) = H(M)[[]] be the space of all formal Taylor series

f=)_hif;
j=0

where f; € H(M) andh is a formal parameter.

A guantizatiorof the Poisson structure definedth6)is an associative algebra operation
on A(M), which is denoted by, satisfying the following conditions (s¢2,7,8,12]for the
details). For any elemengt:= Z?io hig; € A(M) the product

frg =y hig;

j=0
satisfies the following conditions:

1. eachyp; € H(M) is some polynomial (independent pfandg) in derivatives (of arbitrary
order) of{ f;} >0 and{g;}>0;

2. ¢o = fogo;

3. Ixf = fx1l= fforeveryf e H(M);

4. fxg— gk f =~/—1h{fo, g0} + h?B, wherep € A(M) depends ory, g.

Therefore x is a one-parameter deformation of the pointwise multiplication structure on
H(M) with the infinitesimal deformation given by the Poisson structure.

Itis known that everyC> symplectic structure admits a quantizat[@t8]; in fact, every
C® Poisson structure admits a quantizatjtf]. However, in general, there is no natural
guantization; the space of all possilal&® quantizations of a symplectic structure is infinite
dimensional. Equivalence classes of smooth star products on a smooth symplectic manifold
are parameterized by sequences with values in the second de Rham cohomology of the
manifold[1]. So often it is of interest to be able to give an explicit natural quantization in
a given context (sefs,10]).

A constant symplectic structure on a vector space has a canonical quantization, known
as the Moyal-Weyl quantization. We will now describe the Moyal-Weyl quantization.

Let V be a complex vector space of dimension Ret ® be a constant symplectic form
on V. In other words@® € A2V* defining a nondegenerate skew-symmetric bilinear form
on V. Let #(V) denote the space of all holomorphic functions Wrequipped with the
Poisson structure defined above.

Let

AV->VxV
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denote the diagonal homomorphism defined by (v, v). There exists a unique differential
operator

D:HV xV)— HV xV) (2.7)
with constant coefficients such that for any paig € H(V),

{fig}=A"D(f ®y),

where f ® g is the function onV x V defined by(u, v) — f(u)g(v) [8,12].
TheMoyal-Weyl algebras defined by

fxg=A"exp(V=IhD)(f ® g) € A(V) (2.8)

for £ ¢ € H(V), anditis extended to a multiplication operationd(V) using the bilinearity
condition with respect ta. In other words, iff = Z?‘;Oh-/fj andg := Z?io hig; are
two elements of4(V), then

frg =Y WY(fixg)) € AW).

i, j=0

It is known that thisk operation makegl(V) into an associative algebra that quantizes the
symplectic structur@. See[2,12] for the details.
Let {z;}1<i<2, be a basis of the dual vector space So,

1 2
e = > Z wijzi A\ Zj- (2.9)
i,j=1
Let (5j) be the inverse matrix of the matr'(kwij)f’}.zl. So(1/2) Z;‘:”j:l tiz; A 2% is the
Poisson structure oWi. Let x; (respectivelyy;) denote the functional ol @ V def/ined by
zi 0 q1 (respectivelyz; o ¢2), whereg; is the projection to theth factor.
For f, g € H(V), the Moyal-Weyl producy x g has the expression

k
*[1({v=1& 4 »
@ =3 H(Ti;’”a—m@j) (OO lyrez | ¥ (2.10)

(se€[8,12)).

Let Sp(V) denote the group of all linear automorphismiopreserving the symplectic
form (~)..The group SpV) acts onA(V) in an obvious way namely,Zj'ioh-/fj) oG =
Z?io h'(fjoG),whereG € Sp(V). Thedifferential operatad in (2.7)evidently commutes
with the diagonal action of §f¥) on V x V. This immediately implies that

(foG)*k(goG) = (f*g) oG, (2.11)

foranyG € Sp(V) and f, g € A(V).
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2.3. SI(V) structure and quantization

Let X be a Riemann surface with a 8b) structurep. We will now quantize the symplectic
surfaceZ defined inSection 2.1

First setX = P(V). Note thatP(V) has a tautological SIV) structure as it can be covered
by a single holomorphic coordinate function, namely the identity map. The complex surface
Z (defined in(2.2)) for X = P(V) will be denoted byZy. Clearly, we have

Zo=V\ {0}

The symplectic fornm on Zg defined in(2.5)coincides with the restriction of the symplectic
form 6 onV. (Recall that inSection 2..we fixed asymplectic formd on V.) To see this, let

Upy) -V \ {0} —> *Q]P’(V)

be the map¥y (defined in(2.4)) for P(V). Then the formyg | o', whereo' as in(2.3),
coincides with the contractioif with e being the Euler vector field ol \ {0} defined
by e(v) = v. Finally, sincedief = 26, it follows immediately thato coincides withd over
V\ {0}.

Now, we have the Moyal-Weyl quantization, defined2B), of w. The identity(2.11)
says that the action of V) on Zy = V \ {0} preserves the quantization.

Now, let X be a general Riemann surface equipped with &/$ktructurep. Take a data
{Ui, ¢d)}ier {Ai j}i jer}, as in the definition of a SIV) structure, forp.

Let

p:Z2—>X (2.12)
be the natural projection. Let
po: Zo— P(V) (2.13)

be the natural projection, that is, the projectipin (2.12)for X = P(V).

From the construction of given inSection 2.1it follows immediately that the mag;
naturally lifts to a biholomorphism qul(qbi(Ui)) with p~1(U;), wherep andpg are defined
in (2.12) and (2.13)respectively. This biholomorphism takes the holomorphic symplectic
form w on p~1(U;) to the symplectic fornd on pal((bi(Ui)). Indeed, this is an immediate
consequence of the construction of the isomorphisnm (2.1) together with the earlier
observation thab for X = IP(V) coincides withy.

Therefore, using this biholomorphism, the above constructed quantization of the sym-
plectic structured on Zq gives a quantization of the symplectic manifgid(U;) c 2
equipped with the symplectic form.

Take anyj in the index sef. We noted earlier that the action of 8 on Zy preserve
its quantization. In particular, it is preserved by the actionAgf. Therefore, the two
quantizations, namely one @ (U;) and one orp~1(U), coincide overp=1(U; N U;).
Consequently, we get a quantization of the symplectic foram Z.
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3. Propertiesof quantization

Fix a SL(V) structurep on X. Let £ be the theta characteristic gh associated t@
(constructed inSection 2.} The symplectic surfac€ is equipped with a quantization
constructed irBection 2.3

Fori < 0, by £2~" we will mean(£*)®. By £2° we will mean the trivial line bundle.

Take a holomorphic section € HO(X, £®"). This sections defines a holomorphic
functionI'; on Z as follows. Ifi = 0, thens is simply a holomorphic function oX. In that
case[ = so p, wherep is defined in(2.12) If i < 0, then take any € X andv € p~1(x).
Now define

() = (s(x), v®7),
where(-, -) is the contraction of£® and£®~". If i > 0, then define
L) = @) (s(x),
wherev* € £} is the dual ofv, that is,u(v*) = 1. Note that the linear map
o: ® HOX, L) — H°(Z, 03) (3.1)
keZ
to the space of all holomorphic functions ahdefined by) ", ., ux — > ;7 I, IS
injective, whergDz is the sheaf of holomorphic functions éh Since
Il = e,

the image of the mag, defined in(3.1), is a subalgebra aff%(Z, ©z). In other words,
the direct sun®;z HO(X, £2¥) with its natural algebra structure becomes a subalgebra of
H%(Z, 0z) using®.

Take two sections € H(X, £%') andr € HO(X, £®/), wherei, j € Z. Let

Ikl = Zh"lpk (3.2)

be thex-product for the quantization correspondingto

Lemma 3.1. For anyk > 0, there is a holomorphic sectian e HO(X, £2(+/+20) such
that I, = ¥.

Proof. Since the homomorphisih constructed irf3.1)is injective, it suffices to show that
around each point € X there is an open neighborhodd C X such that there is section

iy € HO(U,, LOHIT20),,

with I, = %|,-1,), wherep is the projection in(2.12) Indeed, in that case, by the
injectivity of the map@ for the Riemann surfadé, N U,, two such sections, andu, must
coincide ovet/, N U,. Therefore, these locally defined sectiansx € X, patch together
compatibly to give a sectiom of L2020
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The multiplicative groufC* acts onZ. The action o, € C* sends any € Ztoiv. The
quotient of Z by this action is clearly identified witlkk. A holomorphic functionf on Z
coincides withl, for some holomorphic section

a e HO(x, £®)
if and only the identity
fOw) =217 f() (3.3)

is valid.
Let¢ : U — IP(V) be a holomorphic coordinate function compatible with the\3L
structurep. Set

Z1:= pyp(U)) € Zo = V \ {0}, (3.4)

wherepy, as before, is defined {2.13)
In Section 2.3t was noted that from the construction gfit follows that the mapp
induces a biholomorphism qf51(¢(U)) with p~1(U), wherep is defined in(2.12) Let

T:pytdU) — p~ V)

be the biholomorphism obtained fraom

Consider the holomorphic functiofy := (Wl ,-1(y)) o T on Z1 (defined in(3.4)), where
T is the biholomorphism defined above, afidas in(3.2). In view of (3.3), to prove the
lemma it suffices to show that the identity

fiOw) = A7 g () (3.5)

is valid for allv € Z1 andx € C*.
Letsy == (I5l,-1y) o T andry ;= (I}
defined byl and T} respectively. So, if

1w o T be the holomorphic functions dry

o0
s1kl] = Zhjﬂj,

=0

wherex is the Moyal-Weyl quantization of the symplectic structéren V, thengy =
fr, where f; is defined above frond. Indeed, this is an immediate consequence of the
construction of the quantization & done inSection 2.3The identity(3.3) ensures that

s1000) = A 7is1(v)  and 1 () = A r(v) (3.6)

are valid for allv € Z1 and) € C*.
Take anyAr € C*. Consider the automorphism

Ay V{0 — VA {0}
defined byv — Av. Now (3.6) says that

s10Ay = )\._isl and noA; = A._'jtl (3.7)
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are valid. AlSOA%6 = 120, whered is the symplectic form oiir. Therefore A36* = 1.~2¢%,
where#* € A2V is the dual ofs. Note that* is the Poisson form ol for 6. Therefore,
the differential operator in the expressi(h10)

k

Dy = tij — — 3.8
k Z: ij ax,' ayj ( )

onV x V hasthe property tha#i, x A;)*Dy = A~ % Dy. Indeed,ij=1 ij (0/0z;) ®(9/ 9z )
is the expression of the Poisson operator in terms of the lpasis,} of V* (see(2.9)).
Therefore, the operatdp,, satisfies this condition. From the expression of Moyal-Weyl
product in(2.10)it follows that the above identity fab; and(3.7)together establis{8.5).
This completes the proof of the lemma. O

Let
I:=9 ( ® H(X, £®’<)> c H%(2,03),
keZ
where® is the injective homomorphism of algebras defined3rl). Lemma 3.1has the

following corollary.

Corollary 3.2. Let X be a Riemann surface withSd (V) structure. The subspad[ ]]
of H(Z)[[h]] is preserved by th&-product onH (Z)[[ k]] defining the quantization corre-
sponding to th&L(V) structure

In the next section we will consider the differential operatorsZasefined byZ.

4. Lifting of symbol of differential operator
4.1. Differential operators and symbol homomorphism

We will briefly recall the definitions of a differential operator and the symbol map.

Let £ be a holomorphic vector bundle over a Riemann surfé@ndnr a nonnegative
integer. Thenth orderjet bundleof E, denoted by/"(E), is defined to be the following
direct image orX

TP\ BE® Oxux(—(n DA )

wherep; : X x X — X,i =1, 2, is the projection onto thih factor andA is the diagonal
divisor onX x X consisting of all points of the forrfx, x). There is a natural exact sequence

0— QY"®E — JYE) — J""HE) - 0 (4.1)

which is constructed using the obvious inclusion (xxx(—(m + 1)A) in
Oxxx(—nA). The inclusion map?%” ® E — J"(E) is constructed by using the injective
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homomorphism
" — JYO
X Ox)

which is defined at any € X by sending(df)®" e (Q?")x, where f is any holomorphic
function defined around with f(x) = O, to the jet of the functiory”/n! at x. There-
fore, J"(E) is a holomorphic vector bundle ovef of rank (n + 1)rank(E). Note that
JOYE) = E.

For another holomorphic vector bundfeover X, the sheaf oflifferential operatorsof
ordern from E to F, denoted by Diff, (E, F), is defined to be

Diff % (E, F) := Homp, (J"(E), F) = J"(E)* ® F.
The homomorphism
o : Diff 4 (E, F) —» Hom(2%" ® E, F) (4.2)

obtained by restricting a homomorphist(E) — F to the subbundlé??” ® E of J"(E)
in (4.1)is known as thesymbol map

In particular, Diﬂ?((E, F) = Hom(E, F) and the symbol homomorphism on it is the
identity map.

4.2. SL(V) structure and differential operator

As before, letX be a Riemann surface equipped with a( Bl structurep.
Fori, j € Z andk > 0, let

SG, j, k) HO(X, £8) @ HO(X, £87) — HO(X, £B++20) (4.3)

be the homomorphism that sends ar®y r to u constructed inemma 3.1
Take a section € HO(X, £%). Let

Sk HOX, £%7) — HO(x, £PH+20) (4.4)

be the homomorphism defined 8§() (1) := SG, j, k)(s®1), wherer € HO(X, £L®/). Note
that the homomorphisi$i(i, j, k) in (4.3)is compatible with restrictions to open subsets. In
other words, ifU is an open subset df equipped with the S{V) structure induced by,
andSy (i, j, k) is the homomorphism i(¢.4) with X replaced by, then the identity

Su(i, j.k)(slu @ tly) = S, J. k(s @ DIy (4.5)

is valid for alls € HO(X, L&) andr € HO(X, L®).

Since the Moyal-Weyl quantization is expressed in terms of differential operators, the
homomorphisms¥ () in (4.4)is given by a differential operator. Since the coefficient of
k¥ in (2.10)is a differential operator of ordé, it follows immediately tha’Sf(j) is given
by a differential operator of order at mastirom £&/ to £2(+/+20 The identity(4.5)
shows that there is a unique differential operator a¥egiving S*(j) that is compatible
with respect to restrictions to open subsets.
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If D e HO(X,Diff% (£®/, £20+/+20)) is a differential operator, then the symbol of
o(D) of D, defined in(4.2), is a holomorphic section of

LR @ O @ TS — O
asTX = £%2,
Lemma4.1. The differential operator of order k
Sk(j) € HO(X, Diffk (89, £80+i+20))
has symbol

—1\k . _1 — k
G(Sf(j))z%i(i—i-1)...(i—|—k—2)(i+k—1)s=(Z—HIZ )(E) s,

wheres € HO(X, £L®') is the section defining* ().

Proof. From the construction of the operaifi(,) it follows immediately that it suffices
to prove the lemma fok = U c P(V), whereU is an open proper subset equipped with
the SL(V) structure induced by the tautological 81) structure orP(V).

Fix a basis{ey, ez} of V such thak] A e5 = 6, where{e], 3} is the dual basis oV*.
Consider the holomorphic embedding

a:C—PW (4.6)
that sends any € C to the line inV spanned bye + e». Let

2= pyH(@(C)) C Zo
be the inverse image, whepeg is the projection defined i(2.13) If X = «(C), then
Z=2Z,

Now we have a holomorphic isomorphism

F:Zy— C2\C

defined by

F(wie1 + waez) = (z—; wz) = (x1,x2) € C2\ C

(note thatws # 0 on Z;). With this identificationF,
9 = xodxqg A dXo

over Z,, wheref is the symplectic forn® on V.
The projectionpg (defined in(2.13) in this identificationF is the projection

(x1, x2) = x1.
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We have
F7Y(x1, x2) = x1x0e1 + x2e2 i= wie + woep € Zp,

wherewa(x1, x2) = x2 andwi(x1, x2) = x1x2 (note thatr, £ 0).

We replaceX by «(C) equipped with the tautological $L) structure. The identification
of Z; with C? \ C using F will be used without any further clarification. So for any
holomorphic section

t € H%a(CT), L&)

overa(C), the function/, defined inSection 3will be considered as a function @? \ C.
Take any sectione H°(«(C), £L®/). To calculate the top order term 8§ (/) () (that is,

the action of the symbol of¥ () ont), we first rewrite the operatdp, onV x V, defined

in (3.8), that occurs in the expression for Moyal-Weyl quantizatiof2i0), in terms of

the coordinatesx1, x2) (using F) instead of its original expression in terms of the linear

coordinategw1, w2) on Z() C V. To rewrite, note that

d 1 0 d d d
— = _—_  and —=——ﬂ—. (4-7)
Jwy X2 0x1 w2 0x2 X2 0X1
If (w1, w2, wy, w)) are the coordinates on x V, where(wy, w5) is the copy of(w1, w2)
in the second factor o/ x V, then(4.7) is valid with w;,i = 1,2, replaced byw;
andx;, i = 1,2, replaced by, where(x, x5) is the copy of(x1, x2). So the operator

Zi2,j=l 4 (9/9x;)(3/dy;) in (3.8)is
Sl 0 b o
ij ox; dy; - w1y 8w/2 dwa 3w/1

i,j=1
_ 10 a x/l ad d x1 0 1 9
T X9 0x1 axy,  xh 0xj dxp  x20x1/) x5, 0x)
astij =0,i=1,2,andi2 =1 = —121.
Now, on the diagonal ofj x Z; we havex; = x/, i = 1, 2. Therefore,
1 9 x; 9 o 1 o
D=-——-2° ;27 -%_9 (4.8)
X2 0x1 x5 0x7 X2 0x1 X5 90X}
when restricted to the diagonal.
Consequently, if > 1, to calculate the symbol of the differential opere&b(rj) it suffices
to consider théth power of

a 0 a 0 190 0 a1 0
D=_—

(4.9)

whereD is defined in(4.8).
We can further simplify the computation of the symbol as follows. We will show that the
term
19 9

- - 4.10
x2 9x1 0x% ( )
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in the right-hand side d#.9)does not contribute to the symbol. To prove this assertion, fix
x1 =a and let

Sy = {(a, x)|x € C*} C Z,

be the subset. We noted earlier that the projecpigrdefined in(2.13)is the projection
of C?\ C to the first factor. Hencé,, is a fiber of the projectiomo. Consequently, for
t € HO(a(C), £87), the restriction ta, of the function

t:=1,

on Z; (defined inSection 3 depends only on the evaluation of the sectiat the point
a(a), wherew is defined in(4.6). So, the restriction of the functiodt/ax; to S, depends
only ont(a(a)). Therefore, ifk > 1, then the tern@d.10)does not contribute to the symbol.

Hence the symbol of the differential operatgfr(j) coincides with the symbol of the
differential operator

(4.11)

(see the coefficient df* in (2.10)).
If u e HO(a(C), L&) andi := I, the corresponding function o, = C? \ C, then

ou l .
— =——u.
0x2 X2

Indeed, this follows immediately from the identi{®.3). Using this, the symbol of the
differential operato®’ defined in(4.11)is

o(D) —i—=1---(—i—k+Ds.

= e/

Note the symbol is defined if@.2) in such a way that the differential operatdr/dx" on
Cis 1.
Sinceo(D') = o(Sf(j)), the proof of the lemma is complete. O

In the next section we will useemma 4.1to decompose a differential operator using the
symbol homomorphism.

5. Decomposition of a differential operator

As in the previous section, & be a Riemann surface equipped with a BLstructure
p. Consider a differential operator

Do € HO(X, Diff & (£L®/, £2+/120y) (5.1)
of orderk > 1, withi ¢ [—2(k — 1), O].
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So, the symbob(Dy) of the operator in(5.1) is a section ofL® (see(4.2)). If Dy is
exactly of ordekk theno(Dp) # 0. Set

r+k—1>luzu¢iiﬁ

= o(D _
50 = o( o)( ' =y

Note that

i+k—1
(77

as the condition ¢ [—2(k — 1), O] implies that ¢ [—k + 1, 0]. FromLemma 4.1it follows
immediately that(Dg) = o(SfO(j)). Consequently,

D1 := Do — Sk (j)

is a differential operator of order at madst- 1. Assume that — 1 > 1.

Now we repeat the above construction by repladitny k1 = k — 1 andi byi; =i+ 2.
Note that the initial assumptioh¢ [—2(k — 1), 0] and the assumptioky > 1 together
ensure that

i1+k1—1
i1+ k1 20,
k1
that is,i1 ¢ [—k1 + 1, O]. Therefore, the construction can be repeated. So we get a holo-
morphic section
s1 € HO(X, £20+2) = HO(X, L% ® 2y)
and a differential operator
Dy € HO(X, Diff A-2(£®J, £(F+20y)

of orderk — 2 in place ofsg andD1, respectively.
Now we can proceed inductively as follows. For the differential operator

Dy e HO(X, Diff k1 (£®7, £OU++20)y)

of orderk — 1, if k —1 > 1,thenset’ = i + 21, k' = k — [ and repeat the initial construction
by substituting; by i/, k by ¥’ andDg by D;. The initial assumption ¢ [-2(k — 1), 0]
implies that’ ¢ [—k’ + 1, O]. The section obtained in place gfwill be denoted by; and
the differential operator obtained in place?f will be denoted byD,, 1. Note that

5| € HO(X, £®(1+21)) — HO(X, £®i ® Q%l)

andD,,, is adifferential operator of ordér/—1. The initial assumptioh¢ [—2(k—1), 0]
ensures that this inductive process can be repeated until we get a differential operator of
order 0.
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Therefore, we have a homomorphism

. L. k .
S HO(X, Diff & (£, £OH++20yy _, SOHO(X, £ @ 2% (5.2)

that sends any differential operatBg to Zf:ol s;. Recall that a zeroth-order differential
operator is a vector bundle homomorphism with the symbol homomorphism being the
identity map.

Note that from the above construction$ft follows immediately that

, . L k .
S(HO(X, Diff &7 (£®], LBH+2yy) IEBI,HO(X, £ @ 2%

for eachl’ € [0, k].
Define the homomorphism

k . . L
S @ HOX, L% ® 2%') — HO(X, Diff &, (£®/, LO0+i+20)y) (5.3)
=0

that sends any
k k
> sie @ HOX, L% @ 2F)
P =0

to the differential operatoZé‘zo Ssk,_l o, WhereSSkI_l (j) are asirLemma 4.1
The above homomorphisi§i has the property that

; i ' . L
S/ <19/HO(X, £®l X Q%l)) C HO(X, Diff ];7[ (£®j’ £®(l+]+2k)))

for eachl’ € [0, k]. Indeed, this is an immediate consequence of the fact&(jdi(j),
1 € [0, k], is a differential operator of ordér— [ (seeLemma 4.).

From the construction of the homomorphisirin (5.2) it is evident thatS and S” are
inverses of each other, wheséis defined in(5.3).

The above constructions are put down in the form of the following theorem.

Theorem 5.1. Let X be a Riemann surface equipped witBla V) structure. Ifi ¢ [—2(k —
1), 0], then the homomorphism

. L k .
S+ HO(X, Diff k. (£®7, £&+7T20y)) — @ HOX, L% ® 2F)
=0

constructed irf5.2)is anisomorphism with’ defined in(5.3)being its inverse. Furthermore
for any integer’ € [0, k],

' . L k .
S(HO(X, Diff 47" (£®7, L8020y « @ HOX, L% ® 2F).
=l
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In Theorem 5.1if we setj = 1, k = 1 andi = 0 (this isnot allowed due to the condition
i ¢ [-2(k — 1), 0]), then the right-hand and the left-hand sides of the homomorphism
S are

H(X, Ox) ® HO(X, 2x) and HO(X, Diff } (£, £%)),

respectively. We will show that there is no differential operatotofiom £ to £23 with
the constant function 1 as its symbol providéds a compact connected Riemann surface
of genus at least two. Indeed, any such differential operatgives a splitting

0—> 2xQL — JHL) —>L—>0
|p
LB =OvQL

of the jet sequence where the exact sequence is the ¢deljyfor E = £ andn = 1. The
vector bundle/*(£) admits flat connection. In fact, any projective structureXoimduces
a flat connection o1 (£) [9]. Therefore, ifX is a compact Riemann surface of genus at
least two, then the above jet sequence does not split (as any holomorphic direct summand
of a flat vector bundle must be of degree 0 but the degre®isfgenusX) — 1).

The above example shows that the isomorphisim (5.2) cannot be extended as an
isomorphism (for dimensional reasons) forialind;.

However, the allowed range¢ [—2(k — 1), 0] in Theorem 5.1can be marginally ex-

panded, which will be explained below.
Setj = —k andi = 2 in Theorem 5.1So we have

k+1
HO(X, Diff & (&%, L8*+2))) = f—BlHO(X’ 2%, (5.4)

Although, Theorem 5.1does not allowi = 0, the decomposition if5.4) extends to a
decomposition

k+1
HO(X, Diff &1 (L®k, @¢+2)) ~ [e_BOHO(X, 2%, (5.5)

The above isomorphism is constructed as follows. Given @/gktructure onX, in [4] a
differential operator

Dk + 1) € HO(X, Diff ];(Jrl([:@—k’ £8K+2)))

was constructed whose symbol is the constant function 1[¢sekheorem 4.1, p. 46%]
Given a differential operator

D e HO(x, Diff FH(£®*, £&E+2y),
its symbolo(D) is a holomorphic function oX. The differential operator

D — o(D)D(k + 1) € HO(X, Diff %, (£L®7*, L2K*+2)y),
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Consequently, the decompositi¢h.4) for the differential operatoD — o(D)D(k + 1)
gives the decompositiofd.5)for D. In other words, if

k+1
D—o(D)D(k+1) =) 6
=1

by (5.4), whereg, is a holomorphic section mz?’, thenD corresponds te(D) + ijll 0
by the isomorphism ii§5.5).

Remark 5.2. Let W be a holomorphic vector bundle ov&requipped with a holomor-
phic connectionV. Since any holomorphic connection on a Riemann surface is flat, the
connectionV induces a canonical isomorphism of vector bundles

JWRE) =W J(E) (5.6)

for anyi > 0, whereE is any holomorphic vector bundle. The isomorphisn{5t6) can
be constructed as follows. For anye X andw € W,, let @ be the (unique) flat section
of W, defined around, such that(x) = w. Now for any holomorphic section of E
defined arouna, send the paifw, s) to the holomorphic sectiofd ® s of W ® E defined
aroundx. Consider the element iV (W ® E)), defined byd ® s. If s vanishes ak of
orderi + 1, then clearlyv ® s also vanishes atof orderi + 1. Therefore(w, s) = W ® s
induces a holomorphic homomorphism of vector bundie® J/(E) — J{(W ® E). Itis
straight-forward to check that this homomorphism is an isomorphism.
Using the isomorphism i{6.6), Theorem 5.4gives

, L k .
HO(X, Diff k(L8 @ W, L2120 @ £)) = @ HO(X, L% ® 22 @ Hom(W, E))
1=0
wherei, j, k are as inTheorem 5.1Similarly, (5.5) gives

k+1
HO(x, Diff A1 (L8 * @ w, £8*+2) @ E)) = I@OHO(X, 2% @ Hom(Ww, E)).

The notion of projective structure on a Riemann surface can be generalized to higher di-
mensions as follows. L&t be a complex vector space of dimensieh22 equipped with
a nondegenerate anti-symmetric bilinear f@rm A2V*. Let Si(V) denote the group of all
linear automorphisms df preserving the symplectic forth SoG := Sp(V)/(Z/27Z) is a
simple group. LetP(V) denote the projective space parameterizing all lind8.i80G acts
faithfully on P(V). Let M be a complex manifold of dimensio@ 2- 1. A holomorphic co-
ordinate function oM is a pair(U, ¢), whereU C M is an open subset agd: U — P(V)
is a holomorphic embedding. &-structureon M is defined by giving a covering aff by
holomorphic coordinate functiodsU;, ¢;)}ic; such that each transition functigno 4;1.*1
is the restriction of some automorphidiy; € G C Aut(P(V)) to¢;(U; NU;). Soifd =0,
then aG-structure is a projective structure on a Riemann surface.

Let M be a complex manifold of dimensior/2- 1 equipped with aG-structure. The
G-structure defines a holomorphic contact structBrec TM on M, whereTM is the
holomorphic tangent bundle af (see[5]). Let N := (TM/F)* be the holomorphic line
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bundle overM. We will denote byN’ the complement of the zero section in the total space
of N. (Note thatN’ is naturally identified with the complement of the zero section in the
dual line bundleN*.) The complex manifoldV’ has a natural holomorphic symplectic
structure. IN5], a canonical quantization of this symplectic manifold was constructed (see
[5, Theorem 4.2, p. 363] As in the case off = 0, this quantization is constructed using
the Moyal-Weyl quantization of the symplectic structaren V.

Given a holomorphic sectianof N/, i € Z, as before, we have holomorphic function
I, on N’ that satisfies the identity; (v) = (s(x), v®~), wherex € M is the projection of
v. For another holomorphic sectiore Ho(M, N®/), consider

o0
Loxl, =) W,
k=0

where thex-product is with respect to the canonical quantizatiowwb6€onstructed iff5].
Now it is easy to check that the following versionlafmma 3.1is valid.

Modified version of Lemma 3.1. For anyk > 0, there is a unique holomorphic section
u € HO(M, N®UHITh)

such thaty, = I,.

Therefore, as in4.4), sending any to u constructed above we obtain a holomorphic
differential operator

Sk(j) € HO(M, Diffk (N®] | N®UHiHR)y)

of orderk on M.

The symbolo(Sf(j)) of the differential operatoSf(j) is a holomorphic section of
N®(+h @ SymlTM over M, where SyriTM denotes theth symmetric power of the
tangent bundle.

The symmetric power of the natural projectionTdfl to N* defines a homomorphism

£ SymFTM — (N*)®*,

Now let s’ be the holomorphic section a¥®' defined by the image af(S¥(j)) in the
following composition of homomorphisms:

O'(Sf(‘])) c HO(M, N®(i+k) ® Syl’T’(‘TM)—);HO(M, N®(i+k) ® (N*)®k)
~ HO(M, N®), (5.7)

whereN®(+h) @ (N*)®k . N®i js the contraction oN®k with its dual(N*)®¥.
As done in_emma 4.1it can be shown thatthe above constructed sestian#° (M, N®')
is a constant scalar multiple of the sectiotat we started with.
In other words, using the quantization we are able to recover the imagéSbGj))
in HO(M, N®) (for the composition homomorphism {6.7)), but nota(SX()) itself. For
example, this construction of a differential operator from a symbol does not give a nontrivial
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differential operator if the symbol comes from the kernel of the composition homomorphism
in (5.7).

The key point in the decomposition of differential operators construct&étiéorem 5.1
is to be able to construct a differential operator from a given section of a tensor power of
L with the property that the symbol coincides with the given section. As we have shown
above, ifd > 1 then from a given section of a tensor powerNdfwe are still able to
construct a differential operator, but the symbol of the differential operator in general does
not coincide with the given section. Consequerilyeorem 5.-and(5.5) proved ford = 0
do not generalize ta > 1.
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