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Abstract

LetX be a Riemann surface equipped with a projective structurep andL a theta characteristic
onX, or in other words,L is a holomorphic line bundle equipped with a holomorphic isomorphism
with the holomorphic cotangent bundleΩX. The complement of the zero section in the total space
of the line bundleL has a natural holomorphic symplectic structure, and usingp, this symplectic
structure has a canonical quantization. Using this quantization, holomorphic differential operators
onX are constructed. The main result is the construction of a canonical isomorphism

H0(X,Diff kX(L
⊗j,L⊗(i+j+2k))) ∼= k⊕

l=0
H0(X,L⊗i ⊗Ω⊗l

X ),

i, j ∈ Z, n ≥ 0, providedi /∈ [−2(k − 1),0].
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1. Introduction

LetX be a Riemann surface, not necessarily compact or of finite type. Fix a holomorphic
line bundleLoverX together with a holomorphic isomorphism ofL⊗2 with the holomorphic
cotangent bundleΩX. In other words,L is a theta characteristic onX.

A projective structure onX is a covering ofX by holomorphic coordinate functions
such that all the transition functions are Möbius transformations. (Möbius transformations
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are functions of the formz 
→ (az+ b)/(cz+ d), a, b, c, d ∈ C with ad− bc = 1;
so the group defined by all Möbius transformations is identified with PSL(2,C).) Every
Riemann surface admits a projective structure, and the space of all projective structures on
X is an affine space forH0(X,Ω⊗2

X ). Given a projective structure onX, using the theta
characteristicL the transition functions can be lifted from the Möbius group PSL(2,C) to
SL(2,C) satisfying the cocycle condition (seeSection 2.1for the details).

LetZ denote the complex surface defined by the complement of the zero section in the
total space of the line bundleL. The complex manifoldZ has a holomorphic symplectic
structure induced by the standard symplectic form on the total space ofΩX. More precisely,
the symplectic structure onZ is the pullback, using the mapv 
→ v ⊗ v, of the standard
symplectic form on the total space ofΩX.

In [3] it was shown that for each projective structure onX there is a canonically associated
quantization of this symplectic surfaceZ. LetH(Z) denote the space of all (locally defined)
holomorphic functions onZ. We recall that a quantization is an associative multiplication
operation

� : H(Z)⊗
C

H(Z)→ H(Z)[[h]]

with h being a formal parameter, such that forh = 0 it is the pointwise product onH(Z),
and the derivative ath = 0 of this� operation is given by the Poisson structure onH(Z)
defined by the symplectic form (seeSection 2.2for the details).

Fix a projective structurep onX. Consequently, we have a quantization of the symplectic
varietyZ.

A holomorphic section

s ∈ H0(X,L⊗i)

defines a holomorphic function onZ, which will be denoted byΓs. For anyz ∈ Z projecting
to x ∈ X, if s(x) = cz⊗i, thenΓs(z) = c (seeSection 3). For another holomorphic section
t ∈ H0(X,L⊗j), let

Γs�Γt =
∞∑
k=0

hkΨk

be the quantization product.
We observe that for anyk ≥ 0, there is a (unique) section

u ∈ H0(X,L⊗(i+j+2k))

such thatΓu = Ψk (Lemma 3.1).
As a consequence ofLemma 3.1, fixing the sections we get a unique holomorphic

differential operator onX

Sks (j) ∈ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))

which is determined by the following two conditions:

1. for any sectiont of L⊗j, its evaluationSks (j)(t) coincides with the sectionu given by
Lemma 3.1;
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2. for any open subsetU of X equipped with the projective structure induced byp, the
differential operatorSks (j)U obtained by substitutingXbyU coincides with the restriction
of Sks (j) toU (that is,Sks (j) is a local operator).

The symbolσ(Sks (j)) of the differential operatorSks (j) is

σ(Sks (j)) =
(
i+ k − 1

k

)(√−1

2

)k
s

(seeLemma 4.1).
UsingLemma 4.1inductively, it is possible, for suitable values ofi andk, to decompose,

in a canonical fashion, a differential operator

D ∈ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))

into a sum ofk+ 1 differential operators of order 0,1, . . . , k. Note that in general only the
symbol of a differential operator makes sense; subsequent order terms do not make sense
in general.

More precisely, ifi /∈ [−2(k − 1),0], we have an isomorphism

k⊕
l=0
H0(X,L⊗i ⊗Ω⊗l

X )→ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))

that sends anysl ∈ H0(X,L⊗i⊗Ω⊗l
X ), wherel ∈ [0, k], to the differential operatorSk−lsl

(j)

given byLemma 4.1(Theorem 5.1). Furthermore, the image ofH0(X,L⊗i⊗Ω⊗l
X ), by the

above homomorphism, is contained in

H0(X,Diff k−lX (L⊗j,L⊗(i+j+2k))) ⊂ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))

for each l ∈ [0, k]. In other words, the above decomposition of a differential opera-
tor into sections ofH0(X,L⊗i ⊗ Ω⊗l

X ), l ∈ [0, k], is compatible with the filtration of
H0(X,Diff k−lX (L⊗j,L⊗(i+j+2k))) defined by the lower order differential operators.

The space of all differential operators of orderk fromL⊗j toL⊗(i+j+2k) has a canonical
filtration which is given by operators of orderl with l ∈ [0, k]. However,Theorem 5.1says
that after choosing a projective structure onX, this filtration of differential operators has a
natural semisimplification.

This decomposition extends to differential operators onW ⊗ L⊗j, whereW is a vector
bundle overX equipped with a holomorphic connection (seeRemark 5.2).

2. Preliminaries

2.1. Projective structure

Take a complex vector spaceV of dimension 2. LetP(V) denote the projective line
consisting of all one-dimensional subspaces ofV . Let SL(V) denote the group of all auto-
morphisms ofV that act trivially on the line∧2V . The group of all automorphisms ofP(V)



396 I. Biswas / Journal of Geometry and Physics 50 (2004) 393–414

coincides with PSL(V) := SL(V)/(Z/2Z), whereZ/2Z is the center of SL(V) consisting
of ±IdV . Note that choosing a basis ofV , the Möbius group (the group of fractional linear
transformations of the Riemann sphereĈ = CP

1) gets identified with PSL(V).
Let X be a Riemann surface. Wedo notassumeX to be compact or of finite type. By

a holomorphic coordinate functionon X we will mean a pair of the form(U, φ), where
U ⊂ X is some open subset and

φ : U → P(V)

a biholomorphism ofU with the image ofφ. By aholomorphic atlasonX we will mean a
collection of holomorphic coordinate functions{(Ui, φi)}i∈I such that⋃

i∈I
Ui = X.

Let {(Ui, φi)}i∈I be a holomorphic atlas satisfying the condition that for each pair(i, j) ∈
I×I there is an elementTi,j ∈ Aut(P(V)) such that the transition functionφi◦φ−1

j coincides
with the restriction ofTi,j to φj(Ui ∩ Uj).

Another holomorphic atlas{(Uj, φj)}j∈J satisfying this condition on transition functions
is calledequivalentto {(Ui, φi)}i∈I if the above condition on transition functions holds
also for the union{(Uk, φk)}k∈I∪J . A projective structureonX is an equivalence class of
holomorphic atlases satisfying the above condition on transition functions[9].

For our purpose we need a slightly refined structure, which we will call a SL(V) structure.
A SL(V) structure onX is defined by giving a holomorphic atlas{(Ui, φi)}i∈I together

with Ai,i′ ∈ SL(V) for each(i, i′) ∈ I × I such that

1. the transition functionφi ◦ φ−1
j coincides with the restriction toφj(Ui ∩Uj) of the map

Ai,j : P(V)→ P(V);
2. Ai,j = A−1

j,i ;
3. Ai,jAj,kAk,i = IdV .

The last two conditions mean that the collection{Ai,j} form a one-cocycle. Another such
data

{{(Uj, φj)}j∈J , {Aj,k}j,k∈J }
satisfying the three conditions is calledequivalentto it if their union

{{(Ui, φi)}i∈I∪J , {Ai,j}i,j∈I∪J }
is a part of a data satisfying the above three conditions. A SL(V) structureon X is an
equivalence class of such data.

Given a SL(V) structurep onX, any holomorphic coordinate function occurring in any
atlas in the equivalence class will be calledcompatiblewith p. Note thatp induces a SL(V)
structure on any open subsetU of X in an obvious way.

Clearly, a SL(V) structure gives a projective structure. The difference between a projective
structure and a SL(V) structure is the following. A SL(V) structure is a projective structure
together with the choice of atheta characteristic(see[9]). We recall that a theta characteristic
is a holomorphic line bundleL overX together with a holomorphic isomorphism ofL⊗2
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with the holomorphic cotangent bundleΩX. Any Riemann surface has a theta characteristic.
If each connected component ofX is noncompact, then any line bundle overX, in particular
ΩX, is holomorphically trivializable. For a compact connected Riemann surface of genus
g, there are exactly 22g distinct theta characteristics.

We will show below how a SL(V) structure defined above gives a theta characteristic.
Any Riemann surface admits a projective structure. The uniformization theorem says that
the universal cover of a connected Riemann surfaceY is biholomorphic to eitherC or CP

1

or the upper half planeH. Since the group of all automorphisms of each of these three
Riemann surfaces is contained in the Möbius group,Y gets a natural projective structure.
The space of all projective structures onY is an affine space forH0(Y,Ω⊗2

Y ), the space of
holomorphic quadratic differentials onY .

LetL0 denote the tautological line bundleOP(V)(−1) overP(V). Note thatL⊗2
0 is canon-

ically identified withΩP(V) ⊗ ζ, whereζ is the trivial line bundle overP(V) with fiber
∧2V . Indeed, for any one-dimensional subspaceξ ∈ P(V) of V , we haveL0|ξ ∼= ξ and
ΩP(V)|ξ ∼= Hom(V/ξ, ξ). Note that the action of SL(V) on P(V) lifts to L0. Indeed, the
standard action of SL(V) onV gives an action of SL(V) onL0.

We fix, once and for all, a nonzero elementθ ∈ ∧2V ∗ \ {0}. Soθ defines a symplectic
structure onV . Usingθ, the line bundleL⊗2

0 gets identified withΩP(V). Indeed, for any line
l ⊂ V , the fiber ofΩP(V) over the point inP(V) representingl is canonically identified with
Hom(V/l, l). Since Hom(V/l, l) ∼= l⊗2⊗∧2V ∗, the nonzero vectorθ identifies∧2V ∗ with
C, thus identifyingL⊗2

0 with ΩP(V).
We will now show how a SL(V) structure defined above gives a theta characteristic. Let

X be equipped with a SL(V) structurep. Take a data{{(Ui, φi)}i∈I , {Ai,j}i,j∈I}, as in the
definition of a SL(V) structure, in the equivalence class forp. For eachi ∈ I, consider the
line bundleφ∗i L0 on Ui. Since the action SL(V) on P(V) lifts to L0, we can glueφ∗i L0
andφ∗jL0 overUi ∩ Ui using the clutching function given by the action ofAi,j ∈ SL(V).
Since{Ai,j} form a one-cocycle, these locally defined line bundles patch together com-
patibly to define a line bundle overX. Let L denote the line bundle overX obtained
this way.

The isomorphism ofL⊗2
0 with ΩP(V) pulls back to an isomorphism ofφ∗i L

⊗2
0 with

φ∗i ΩP(V) overUi. Now, the differentialdφi gives an isomorphism ofφ∗i ΩP(V) with ΩX|Ui .
Using this and the isomorphismφ∗i L0 = L|Ui obtained from the construction ofLwe get an
isomorphism ofL⊗2|Ui with ΩX|Ui . It is evident from the construction that if we consider
the similar isomorphism overUj, then the two isomorphisms ofL⊗2 withΩX overUi∩Uj
coincide. In other words, we have constructed an isomorphism

Ψ : L⊗2 → ΩX (2.1)

overX. In particular,L is a theta characteristic. It should be emphasized thatL depends on
the SL(V) structurep.

LetOL denote the image of the zero section ofL. Let

Z := L \OL (2.2)

be the complement of the zero section in the total space ofL. SoZ is a complex manifold
of dimension 2.
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Let

pX : ΩX → X

denote the natural projection from the total space of the holomorphic cotangent bundle.
The complex surfaceΩX has a natural holomorphic symplectic form. Indeed,p∗XΩX has a
tautological section which is defined as follows. LetdpX : TΩX → p∗XTXbe the differential
of the mappX, whereTΩX (respectively,TX) is the holomorphic tangent bundle ofΩX

(respectively,X). Consider the homomorphism

(dpX)
∗ : p∗XΩX → ΩΩX.

Note that the line bundlep∗XΩX over the total space ofΩX has a tautological section that
ends any pointz ∈ ΩX to z itself. The image of this section by the above homomorphism
(dpX)∗ defines a holomorphic one-formω′ on the total space ofΩX. The exterior derivative

ω1 := dω′ (2.3)

is a holomorphic symplectic form onΩX. This symplectic formω1 on the total space of
ΩX can also be described using coordinate charts as follows. LetU ⊂ X be an open set and
q0 : U → C a holomorphic coordinate function onU. The coordinate functionq0 defines a
trivialization of the line bundleΩX overU. The trivialization sends the constant function 1 to
the sectiondq0 of the line bundleΩX overU. Using this trivialization we get a holomorphic
coordinate function(p, q) on the open subsetp−1

X (U) ⊂ ΩX, whereq = q0 ◦ pX; for any
z ∈ p−1

X (U), the evaluationp(z) ∈ C satisfies the identityz = p(z)dq0(pX(z)). Now it is
easy to see that the restriction top−1

X (U) of the holomorphic one-formω′ (defined earlier)
coincides withpdq. Therefore, from(2.3)we conclude thatω1 = dp∧ dqoverp−1

X (U).
ConsiderZ defined in(2.2). Let

Ψ0 : Z→ ΩX (2.4)

be the map that sends anyz to Ψ(z ⊗ z), whereΨ is the homomorphism defined in(2.1).
Clearly,Ψ0 is a degree two étale covering of its image. The pull back

ω := 1
2(Ψ

∗
0ω1), (2.5)

whereω1 is defined in(2.3), is a symplectic form onZ.
In [3] it was shown that given a SL(V) structure onX, there is a natural quantization of
Z equipped with the symplectic structureω. We will briefly recall the construction of this
quantization. First we will recall the definition of a quantization.

2.2. Quantization of a holomorphic symplectic form

Let M be a complex manifold. Its holomorphic tangent bundle will be denoted byTM.
LetΘ be a holomorphic symplectic form onM. In other words,Θ is a∂-closed holomorphic
two-form onM with the property that for any pointx ∈ M, the skew-symmetric bilinear
form on the holomorphic tangent spaceTxM defined byΘ(x) is nondegenerate.

Let τ : T ∗M → TM be the isomorphism defined by the nondegenerate formΘ. So
τ−1(v)(w) = Θ(w, v), wherev,w ∈ TxM andx ∈ M.
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Letf andg be two holomorphic functions defined on some open subsetU onM. Sending
the pair(f, g) to Θ(τ(df), τ(dg)) defines aholomorphic Poisson structureon the space of
all locally defined holomorphic functions onM. In other words, the pairing defined by

(f, g) 
→ {f, g} := Θ(τ(df), τ(dg)) (2.6)

is anticommutative, the Jacobi identity is valid (that is, it defines a Lie algebra structure),
and satisfies the Leibniz identity that says{fg, f1} = g{f, f1} + f {g, f1}.

LetH(M) denote the algebra of all (locally defined) holomorphic functions onM. Let
A(M) := H(M)[[h]] be the space of all formal Taylor series

f :=
∞∑
j=0

hjfj,

wherefj ∈ H(M) andh is a formal parameter.
A quantizationof the Poisson structure defined in(2.6)is an associative algebra operation

onA(M), which is denoted by�, satisfying the following conditions (see[2,7,8,12]for the
details). For any elementg :=∑∞

j=0 h
jgj ∈ A(M) the product

f�g =
∞∑
j=0

hjφj

satisfies the following conditions:

1. eachφi ∈ H(M) is some polynomial (independent off andg) in derivatives (of arbitrary
order) of{fj}j≥0 and{gj}j≥0;

2. φ0 = f0g0;
3. 1�f = f�1= f for everyf ∈ H(M);
4. f�g− g�f = √−1h{f0, g0} + h2β, whereβ ∈ A(M) depends onf, g.

Therefore,� is a one-parameter deformation of the pointwise multiplication structure on
H(M) with the infinitesimal deformation given by the Poisson structure.

It is known that everyC∞ symplectic structure admits a quantization[7,8]; in fact, every
C∞ Poisson structure admits a quantization[11]. However, in general, there is no natural
quantization; the space of all possibleC∞ quantizations of a symplectic structure is infinite
dimensional. Equivalence classes of smooth star products on a smooth symplectic manifold
are parameterized by sequences with values in the second de Rham cohomology of the
manifold[1]. So often it is of interest to be able to give an explicit natural quantization in
a given context (see[6,10]).

A constant symplectic structure on a vector space has a canonical quantization, known
as the Moyal–Weyl quantization. We will now describe the Moyal–Weyl quantization.

Let V be a complex vector space of dimension 2n. LetΘ be a constant symplectic form
onV . In other words,Θ ∈ ∧2V ∗ defining a nondegenerate skew-symmetric bilinear form
on V . Let H(V) denote the space of all holomorphic functions onV equipped with the
Poisson structure defined above.

Let

∆ : V → V × V
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denote the diagonal homomorphism defined byv 
→ (v, v). There exists a unique differential
operator

D : H(V × V)→ H(V × V) (2.7)

with constant coefficients such that for any pairf, g ∈ H(V),

{f, g} = ∆∗D(f ⊗ g),

wheref ⊗ g is the function onV × V defined by(u, v) 
→ f(u)g(v) [8,12].
TheMoyal–Weyl algebrais defined by

f�g = ∆∗ exp(1
2(
√−1hD))(f ⊗ g) ∈ A(V) (2.8)

forf, g ∈ H(V), and it is extended to a multiplication operation onA(V)using the bilinearity
condition with respect toh. In other words, iff := ∑∞

j=0 h
jfj andg := ∑∞

j=0 h
jgj are

two elements ofA(V), then

f�g =
∞∑

i,j=0

hi+j(fi�gj) ∈ A(V).

It is known that this� operation makesA(V) into an associative algebra that quantizes the
symplectic structureΘ. See[2,12] for the details.

Let {zi}1≤i≤2n be a basis of the dual vector spaceV ∗. So,

Θ = 1

2

2n∑
i,j=1

ωij zi ∧ zj. (2.9)

Let (tij ) be the inverse matrix of the matrix(−ωij )
2n
i,j=1. So (1/2)

∑2n
i,j=1 tij z

∗
i ∧ z∗j is the

Poisson structure onV . Let xi (respectively,yi) denote the functional onV ⊕ V defined by
zi ◦ q1 (respectively,zi ◦ q2), whereqj is the projection to thejth factor.

Forf, g ∈ H(V), the Moyal–Weyl productf�g has the expression

(f�g)(z) =
∞∑
k=0


 1

k!


√−1

2

2n∑
i,j=1

tij
∂

∂xi

∂

∂yj



k

(f(x)g(y))|y=x=z


hk (2.10)

(see[8,12]).
Let Sp(V) denote the group of all linear automorphism ofV preserving the symplectic

form Θ. The group Sp(V) acts onA(V) in an obvious way namely,(
∑∞

j=0 h
jfj) ◦ G =∑∞

j=0 h
j(fj◦G), whereG ∈ Sp(V). The differential operatorD in (2.7)evidently commutes

with the diagonal action of Sp(V) onV × V . This immediately implies that

(f ◦G)�(g ◦G) = (f�g) ◦G, (2.11)

for anyG ∈ Sp(V) andf, g ∈ A(V).
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2.3. SL(V) structure and quantization

LetXbe a Riemann surface with a SL(V) structurep. We will now quantize the symplectic
surfaceZ defined inSection 2.1.

First setX = P(V). Note thatP(V) has a tautological SL(V) structure as it can be covered
by a single holomorphic coordinate function, namely the identity map. The complex surface
Z (defined in(2.2)) for X = P(V) will be denoted byZ0. Clearly, we have

Z0 = V \ {0}.

The symplectic formω onZ0 defined in(2.5)coincides with the restriction of the symplectic
form θ onV . (Recall that inSection 2.1we fixed asymplectic formθ onV .) To see this, let

ΨP(V) : V \ {0} → ΩP(V)

be the mapΨ0 (defined in(2.4)) for P(V). Then the formΨ∗
P(V)

ω′, whereω′ as in(2.3),
coincides with the contractionieθ with e being the Euler vector field onV \ {0} defined
by e(v) = v. Finally, sincedieθ = 2θ, it follows immediately thatω coincides withθ over
V \ {0}.

Now, we have the Moyal–Weyl quantization, defined in(2.8), of ω. The identity(2.11)
says that the action of SL(V) onZ0 = V \ {0} preserves the quantization.

Now, letX be a general Riemann surface equipped with a SL(V) structurep. Take a data
{{(Ui, φi)}i∈I , {Ai,j}i,j∈I}, as in the definition of a SL(V) structure, forp.

Let

p : Z→ X (2.12)

be the natural projection. Let

p0 : Z0 → P(V) (2.13)

be the natural projection, that is, the projectionp in (2.12)for X = P(V).
From the construction ofL given inSection 2.1it follows immediately that the mapφi

naturally lifts to a biholomorphism ofp−1
0 (φi(Ui))withp−1(Ui), wherepandp0 are defined

in (2.12) and (2.13), respectively. This biholomorphism takes the holomorphic symplectic
formω onp−1(Ui) to the symplectic formθ onp−1

0 (φi(Ui)). Indeed, this is an immediate
consequence of the construction of the isomorphismΨ in (2.1) together with the earlier
observation thatω for X = P(V) coincides withθ.

Therefore, using this biholomorphism, the above constructed quantization of the sym-
plectic structureθ on Z0 gives a quantization of the symplectic manifoldp−1(Ui) ⊂ Z
equipped with the symplectic formω.

Take anyj in the index setI. We noted earlier that the action of SL(V) onZ0 preserve
its quantization. In particular, it is preserved by the action ofAi,j. Therefore, the two
quantizations, namely one onp−1(Ui) and one onp−1(Uj), coincide overp−1(Ui ∩ Uj).
Consequently, we get a quantization of the symplectic formω onZ.
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3. Properties of quantization

Fix a SL(V) structurep on X. Let L be the theta characteristic onX associated top
(constructed inSection 2.1). The symplectic surfaceZ is equipped with a quantization
constructed inSection 2.3.

For i < 0, byL⊗−i we will mean(L∗)⊗i. By L⊗0 we will mean the trivial line bundle.
Take a holomorphic sections ∈ H0(X,L⊗i). This sections defines a holomorphic

functionΓs onZ as follows. Ifi = 0, thens is simply a holomorphic function onX. In that
case,Γs = s◦p, wherep is defined in(2.12). If i < 0, then take anyx ∈ X andv ∈ p−1(x).
Now define

Γs(v) := 〈s(x), v⊗−i〉,
where〈·, ·〉 is the contraction ofL⊗ix andL⊗−ix . If i > 0, then define

Γs(v) := (v∗)⊗i(s(x)),

wherev∗ ∈ L∗x is the dual ofv, that is,v(v∗) = 1. Note that the linear map

Φ : ⊕
k∈Z

H0(X,L⊗k)→ H0(Z,OZ) (3.1)

to the space of all holomorphic functions onZ defined by
∑

k∈Z uk 
→
∑

k∈Z Γuk is
injective, whereOZ is the sheaf of holomorphic functions onZ. Since

ΓsΓt = Γs⊗t ,

the image of the mapΦ, defined in(3.1), is a subalgebra ofH0(Z,OZ). In other words,
the direct sum⊕k∈ZH0(X,L⊗k)with its natural algebra structure becomes a subalgebra of
H0(Z,OZ) usingΦ.

Take two sectionss ∈ H0(X,L⊗i) andt ∈ H0(X,L⊗j), wherei, j ∈ Z. Let

Γs�Γt =
∞∑
k=0

hkΨk (3.2)

be the�-product for the quantization corresponding top.

Lemma 3.1. For anyk ≥ 0, there is a holomorphic sectionu ∈ H0(X,L⊗(i+j+2k)) such
thatΓu = Ψk.

Proof. Since the homomorphismΦ constructed in(3.1)is injective, it suffices to show that
around each pointx ∈ X there is an open neighborhoodUx ⊂ X such that there is section

ux ∈ H0(Ux,L
⊗(i+j+2k)|Ux)

with Γux = Ψk|p−1(Ux)
, wherep is the projection in(2.12). Indeed, in that case, by the

injectivity of the mapΦ for the Riemann surfaceUx∩Uy, two such sectionsux anduy must
coincide overUx ∩ Uy. Therefore, these locally defined sectionsux, x ∈ X, patch together
compatibly to give a sectionu of L⊗(i+j+2k).
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The multiplicative groupC∗ acts onZ. The action ofλ ∈ C
∗ sends anyv ∈ Z toλv. The

quotient ofZ by this action is clearly identified withX. A holomorphic functionf onZ
coincides withΓα for some holomorphic section

α ∈ H0(X,L⊗l)

if and only the identity

f(λv) = λ−lf(v) (3.3)

is valid.
Let φ : U → P(V) be a holomorphic coordinate function compatible with the SL(V)

structurep. Set

Z1 := p−1
0 (φ(U)) ⊂ Z0 = V \ {0}, (3.4)

wherep0, as before, is defined in(2.13).
In Section 2.3it was noted that from the construction ofL it follows that the mapφ

induces a biholomorphism ofp−1
0 (φ(U)) with p−1(U), wherep is defined in(2.12). Let

T : p−1
0 (φ(U))→ p−1(U)

be the biholomorphism obtained fromφ.
Consider the holomorphic functionfk := (Ψk|p−1(U))◦T onZ1 (defined in(3.4)), where

T is the biholomorphism defined above, andΨk as in(3.2). In view of (3.3), to prove the
lemma it suffices to show that the identity

fk(λv) = λ−(i+j+2k)fk(v) (3.5)

is valid for allv ∈ Z1 andλ ∈ C
∗.

Let s1 := (Γs|p−1(U)) ◦ T andt1 := (Γt|p−1(U)) ◦ T be the holomorphic functions onZ1
defined byΓs andΓt respectively. So, if

s1�t1 =
∞∑
l=0

hjβj,

where� is the Moyal–Weyl quantization of the symplectic structureθ on V , thenβk =
fk, wherefk is defined above fromΨk. Indeed, this is an immediate consequence of the
construction of the quantization ofZ done inSection 2.3. The identity(3.3)ensures that

s1(λv) = λ−is1(v) and t1(λv) = λ−jt1(v) (3.6)

are valid for allv ∈ Z1 andλ ∈ C
∗.

Take anyλ ∈ C
∗. Consider the automorphism

Aλ : V \ {0} → V \ {0}
defined byv 
→ λv. Now (3.6)says that

s1 ◦ Aλ = λ−is1 and t1 ◦ Aλ = λ−jt1 (3.7)
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are valid. Also,A∗λθ = λ2θ, whereθ is the symplectic form onV . Therefore,A∗λθ
∗ = λ−2θ∗,

whereθ∗ ∈ ∧2V is the dual ofθ. Note thatθ∗ is the Poisson form onV for θ. Therefore,
the differential operator in the expression(2.10)

Dk :=

 2∑
i,j=1

tij
∂

∂xi

∂

∂yj



k

(3.8)

onV×V has the property that(Aλ×Aλ)∗Dk = λ−2kDk. Indeed,
∑2

i,j=1 tij (∂/∂zi)⊗(∂/∂zj)
is the expression of the Poisson operator in terms of the basis{z1, z2} of V ∗ (see(2.9)).
Therefore, the operatorDk satisfies this condition. From the expression of Moyal–Weyl
product in(2.10)it follows that the above identity forDk and(3.7)together establish(3.5).
This completes the proof of the lemma. �

Let

I := Φ

(
⊕
k∈Z

H0(X,L⊗k)
)
⊂ H0(Z,OZ),

whereΦ is the injective homomorphism of algebras defined in(3.1). Lemma 3.1has the
following corollary.

Corollary 3.2. Let X be a Riemann surface with aSL(V) structure. The subspaceI[[h]]
ofH(Z)[[h]] is preserved by the�-product onH(Z)[[h]] defining the quantization corre-
sponding to theSL(V) structure.

In the next section we will consider the differential operators onZ defined byI.

4. Lifting of symbol of differential operator

4.1. Differential operators and symbol homomorphism

We will briefly recall the definitions of a differential operator and the symbol map.
Let E be a holomorphic vector bundle over a Riemann surfaceX andn a nonnegative

integer. Thenth orderjet bundleof E, denoted byJn(E), is defined to be the following
direct image onX

Jn(E) := p1∗
(

p∗2E
p∗2E⊗OX×X(−(n+ 1)∆)

)
,

wherepi : X×X→ X, i = 1,2, is the projection onto theith factor and∆ is the diagonal
divisor onX×X consisting of all points of the form(x, x). There is a natural exact sequence

0→ Ω⊗n
X ⊗ E→ Jn(E)→ Jn−1(E)→ 0 (4.1)

which is constructed using the obvious inclusion ofOX×X(−(n + 1)∆) in
OX×X(−n∆). The inclusion mapΩ⊗n

X ⊗E→ Jn(E) is constructed by using the injective
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homomorphism

Ω⊗n
X → Jn(OX)

which is defined at anyx ∈ X by sending(df)⊗n ∈ (Ω⊗n
X )x, wheref is any holomorphic

function defined aroundx with f(x) = 0, to the jet of the functionfn/n! at x. There-
fore, Jn(E) is a holomorphic vector bundle overX of rank (n + 1)rank(E). Note that
J0(E) ∼= E.

For another holomorphic vector bundleF overX, the sheaf ofdifferential operatorsof
ordern fromE to F , denoted by DiffnX(E, F), is defined to be

Diff nX(E, F) := HomOX(J
n(E), F) = Jn(E)∗ ⊗ F.

The homomorphism

σ : Diff nX(E, F)→ Hom(Ω⊗n
X ⊗ E,F) (4.2)

obtained by restricting a homomorphismJn(E)→ F to the subbundleΩ⊗n
X ⊗E of Jn(E)

in (4.1) is known as thesymbol map.
In particular, Diff0X(E, F) = Hom(E, F) and the symbol homomorphism on it is the

identity map.

4.2. SL(V) structure and differential operator

As before, letX be a Riemann surface equipped with a SL(V) structurep.
For i, j ∈ Z andk ≥ 0, let

S(i, j, k) : H0(X,L⊗i)⊗H0(X,L⊗j)→ H0(X,L⊗(i+j+2k)) (4.3)

be the homomorphism that sends anys⊗ t to u constructed inLemma 3.1.
Take a sections ∈ H0(X,L⊗i). Let

Sks (j) : H0(X,L⊗j)→ H0(X,L⊗(i+j+2k)) (4.4)

be the homomorphism defined bySks (j)(t) := S(i, j, k)(s⊗ t), wheret ∈ H0(X,L⊗j). Note
that the homomorphismS(i, j, k) in (4.3)is compatible with restrictions to open subsets. In
other words, ifU is an open subset ofX equipped with the SL(V) structure induced byp,
andSU(i, j, k) is the homomorphism in(4.4)with X replaced byU, then the identity

SU(i, j, k)(s|U ⊗ t|U) = S(i, j, k)(s⊗ t)|U (4.5)

is valid for all s ∈ H0(X,L⊗i) andt ∈ H0(X,L⊗j).
Since the Moyal–Weyl quantization is expressed in terms of differential operators, the

homomorphismSks (j) in (4.4) is given by a differential operator. Since the coefficient of
hk in (2.10)is a differential operator of orderk, it follows immediately thatSks (j) is given
by a differential operator of order at mostk from L⊗j to L⊗(i+j+2k). The identity(4.5)
shows that there is a unique differential operator overX giving Sks (j) that is compatible
with respect to restrictions to open subsets.



406 I. Biswas / Journal of Geometry and Physics 50 (2004) 393–414

If D ∈ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k))) is a differential operator, then the symbol of

σ(D) of D, defined in(4.2), is a holomorphic section of

L⊗(i+j+2k) ⊗ L⊗−j ⊗ T⊗kX = L⊗i

asTX= L⊗−2.

Lemma 4.1. The differential operator of order k

Sks (j) ∈ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))

has symbol

σ(Sks (j))=
(
√−1)k

k!2k
i(i+ 1) · · · (i+ k − 2)(i+ k − 1)s =

(
i+ k − 1

k

)(√−1

2

)k
s,

wheres ∈ H0(X,L⊗i) is the section definingSks (j).

Proof. From the construction of the operatorSks (j) it follows immediately that it suffices
to prove the lemma forX = U ⊂ P(V), whereU is an open proper subset equipped with
the SL(V) structure induced by the tautological SL(V) structure onP(V).

Fix a basis{e1, e2} of V such thate∗1 ∧ e∗2 = θ, where{e∗1, e∗2} is the dual basis ofV ∗.
Consider the holomorphic embedding

α : C → P(V) (4.6)

that sends anyz ∈ C to the line inV spanned byze1 + e2. Let

Z′0 := p−1
0 (α(C)) ⊂ Z0

be the inverse image, wherep0 is the projection defined in(2.13). If X = α(C), then
Z = Z′0.

Now we have a holomorphic isomorphism

F : Z′0 → C
2 \ C

defined by

F(w1e1 + w2e2) :=
(
w1

w2
, w2

)
:= (x1, x2) ∈ C

2 \ C

(note thatw2 �= 0 onZ′0). With this identificationF ,

θ = x2 dx1 ∧ dx2

overZ′0, whereθ is the symplectic formθ onV .
The projectionp0 (defined in(2.13)) in this identificationF is the projection

(x1, x2) 
→ x1.
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We have

F−1(x1, x2) = x1x2e1 + x2e2 := w1e1 + w2e2 ∈ Z′0,
wherew2(x1, x2) = x2 andw1(x1, x2) = x1x2 (note thatx2 �= 0).

We replaceX byα(C) equipped with the tautological SL(V) structure. The identification
of Z′0 with C

2 \ C usingF will be used without any further clarification. So for any
holomorphic section

τ ∈ H0(α(C),L⊗n)

overα(C), the functionΓτ , defined inSection 3, will be considered as a function onC2 \C.
Take any sectiont ∈ H0(α(C),L⊗j). To calculate the top order term ofSks (j)(t) (that is,

the action of the symbol ofSks (j) on t), we first rewrite the operatorDk onV × V , defined
in (3.8), that occurs in the expression for Moyal–Weyl quantization in(2.10), in terms of
the coordinates(x1, x2) (usingF ) instead of its original expression in terms of the linear
coordinates(w1, w2) onZ′0 ⊂ V . To rewrite, note that

∂

∂w1
= 1

x2

∂

∂x1
and

∂

∂w2
= ∂

∂x2
− x1

x2

∂

∂x1
. (4.7)

If (w1, w2, w
′
1, w

′
2) are the coordinates onV × V , where(w′1, w

′
2) is the copy of(w1, w2)

in the second factor ofV × V , then (4.7) is valid with wi, i = 1,2, replaced byw′i
andxi, i = 1,2, replaced byx′i, where(x′1, x

′
2) is the copy of(x1, x2). So the operator∑2

i,j=1 tij (∂/∂xi)(∂/∂yj) in (3.8) is

2∑
i,j=1

tij
∂

∂xi

∂

∂yj
= ∂

∂w1

∂

∂w′2
− ∂

∂w2

∂

∂w′1

= 1

x2

∂

∂x1

(
∂

∂x′2
− x′1
x′2

∂

∂x′1

)
−
(

∂

∂x2
− x1

x2

∂

∂x1

)
1

x′2

∂

∂x′1
astii = 0, i = 1,2, andt12 = 1= −t21.

Now, on the diagonal ofZ′0 × Z′0 we havexi = x′i, i = 1,2. Therefore,

D := − 1

x2

∂

∂x1

x′1
x′2

∂

∂x′1
+ x1

x2

∂

∂x1

1

x′2

∂

∂x′1
= 0 (4.8)

when restricted to the diagonal.
Consequently, ifk ≥ 1, to calculate the symbol of the differential operatorSks (j) it suffices

to consider thekth power of

∂

∂w1

∂

∂w′2
− ∂

∂w2

∂

∂w′1
−D = 1

x2

∂

∂x1

∂

∂x′2
− ∂

∂x2

1

x′2

∂

∂x′1
(4.9)

whereD is defined in(4.8).
We can further simplify the computation of the symbol as follows. We will show that the

term
1

x2

∂

∂x1

∂

∂x′2
(4.10)
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in the right-hand side of(4.9)does not contribute to the symbol. To prove this assertion, fix
x1 = a and let

Sa := {(a, x)|x ∈ C
∗} ⊂ Z′0

be the subset. We noted earlier that the projectionp0 defined in(2.13) is the projection
of C

2 \ C to the first factor. HenceSa is a fiber of the projectionp0. Consequently, for
t ∈ H0(α(C),L⊗j), the restriction toSa of the function

t̂ := Γt

onZ′0 (defined inSection 3) depends only on the evaluation of the sectiont at the point
α(a), whereα is defined in(4.6). So, the restriction of the function∂t̂/∂x2 to Sa depends
only ont(α(a)). Therefore, ifk ≥ 1, then the term(4.10)does not contribute to the symbol.

Hence the symbol of the differential operatorSks (j) coincides with the symbol of the
differential operator

D′ := 1

k!

(
−
√−1

2

∂

∂x2

1

x′2

∂

∂x′1

)k∣∣∣∣∣∣
x2=x′2

(4.11)

(see the coefficient ofhk in (2.10)).
If u ∈ H0(α(C),L⊗l) andû := Γu the corresponding function onZ′0 = C

2 \ C, then

∂û

∂x2
= − l

x2
û.

Indeed, this follows immediately from the identity(3.3). Using this, the symbol of the
differential operatorD′ defined in(4.11)is

σ(D′) = 1

k!(2
√−1)k

(−i)(−i− 1) · · · (−i− k + 1)s.

Note the symbol is defined in(4.2) in such a way that the differential operator dn/dxn on
C is 1.

Sinceσ(D′) = σ(Sks (j)), the proof of the lemma is complete. �

In the next section we will useLemma 4.1to decompose a differential operator using the
symbol homomorphism.

5. Decomposition of a differential operator

As in the previous section, letX be a Riemann surface equipped with a SL(V) structure
p. Consider a differential operator

D0 ∈ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k))) (5.1)

of orderk ≥ 1, with i /∈ [−2(k − 1),0].
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So, the symbolσ(D0) of the operator in(5.1) is a section ofL⊗i (see(4.2)). If D0 is
exactly of orderk thenσ(D0) �= 0. Set

s0 := σ(D0)

(
i+ k − 1

k

)−1
k!2k(

√−1)k

(
√−1)k

.

Note that(
i+ k − 1

k

)
�= 0

as the conditioni /∈ [−2(k−1),0] implies thati /∈ [−k+1,0]. FromLemma 4.1it follows
immediately thatσ(D0) = σ(Sks0(j)). Consequently,

D1 := D0 − Sks0(j)

is a differential operator of order at mostk − 1. Assume thatk − 1≥ 1.
Now we repeat the above construction by replacingk by k1 = k− 1 andi by i1 = i+ 2.

Note that the initial assumptioni /∈ [−2(k − 1),0] and the assumptionk1 ≥ 1 together
ensure that(

i1 + k1 − 1

k1

)
�= 0,

that is,i1 /∈ [−k1 + 1,0]. Therefore, the construction can be repeated. So we get a holo-
morphic section

s1 ∈ H0(X,L⊗(i+2)) = H0(X,L⊗i ⊗ΩX)

and a differential operator

D2 ∈ H0(X,Diff k−2
X (L⊗j,L⊗(i+j+2k)))

of orderk − 2 in place ofs0 andD1, respectively.
Now we can proceed inductively as follows. For the differential operator

Dl ∈ H0(X,Diff k−lX (L⊗j,L⊗(i+j+2k)))

of orderk− l, if k− l ≥ 1, then seti′ = i+2l, k′ = k− l and repeat the initial construction
by substitutingi by i′, k by k′ andD0 by Dl. The initial assumptioni /∈ [−2(k − 1),0]
implies thati′ /∈ [−k′ + 1,0]. The section obtained in place ofs0 will be denoted bysl and
the differential operator obtained in place ofD1 will be denoted byDl+1. Note that

sl ∈ H0(X,L⊗(i+2l)) = H0(X,L⊗i ⊗Ω⊗l
X )

andDl+1 is a differential operator of orderk−l−1. The initial assumptioni /∈ [−2(k−1),0]
ensures that this inductive process can be repeated until we get a differential operator of
order 0.
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Therefore, we have a homomorphism

S : H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))→ k⊕

l=0
H0(X,L⊗i ⊗Ω⊗l

X ) (5.2)

that sends any differential operatorD0 to
∑k−1

l=0 sl. Recall that a zeroth-order differential
operator is a vector bundle homomorphism with the symbol homomorphism being the
identity map.

Note that from the above construction ofS it follows immediately that

S(H0(X,Diff k−l
′

X (L⊗j,L⊗(i+j+2k)))) ⊂ k⊕
l=l′

H0(X,L⊗i ⊗Ω⊗l
X )

for eachl′ ∈ [0, k].
Define the homomorphism

S′ :
k⊕
l=0
H0(X,L⊗i ⊗Ω⊗l

X )→ H0(X,Diff kX(L
⊗j,L⊗(i+j+2k))) (5.3)

that sends any

k∑
l=0

sl ∈
k⊕
l=0
H0(X,L⊗i ⊗Ω⊗l

X )

to the differential operator
∑k

l=0 S
k−l
sl

(j), whereSk−lsl
(j) are as inLemma 4.1.

The above homomorphismS′ has the property that

S′
(

k⊕
l=l′

H0(X,L⊗i ⊗Ω⊗l
X )

)
⊂ H0(X,Diff k−l

′
X (L⊗j,L⊗(i+j+2k)))

for eachl′ ∈ [0, k]. Indeed, this is an immediate consequence of the fact thatSk−lsl
(j),

l ∈ [0, k], is a differential operator of orderk − l (seeLemma 4.1).
From the construction of the homomorphismS in (5.2) it is evident thatS andS′ are

inverses of each other, whereS′ is defined in(5.3).
The above constructions are put down in the form of the following theorem.

Theorem 5.1. Let X be a Riemann surface equipped with aSL(V) structure. Ifi /∈ [−2(k−
1),0], then the homomorphism

S : H0(X,Diff kX(L
⊗j,L⊗(i+j+2k)))→ k⊕

l=0
H0(X,L⊗i ⊗Ω⊗l

X )

constructed in(5.2)is an isomorphism withS′ defined in(5.3)being its inverse. Furthermore,
for any integerl′ ∈ [0, k],

S(H0(X,Diff k−l
′

X (L⊗j,L⊗(i+j+2k)))) ⊂ k⊕
l=l′

H0(X,L⊗i ⊗Ω⊗l
X ).
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In Theorem 5.1, if we setj = 1, k = 1 andi = 0 (this isnot allowed due to the condition
i /∈ [−2(k − 1),0]), then the right-hand and the left-hand sides of the homomorphism
S are

H0(X,OX)⊕H0(X,ΩX) and H0(X,Diff 1
X(L,L

⊗3)),

respectively. We will show that there is no differential operator onX from L to L⊗3 with
the constant function 1 as its symbol providedX is a compact connected Riemann surface
of genus at least two. Indeed, any such differential operatorD gives a splitting

0→ ΩX ⊗ L→ → L→ 0

of the jet sequence where the exact sequence is the one in(4.1) for E = L andn = 1. The
vector bundleJ1(L) admits flat connection. In fact, any projective structure onX induces
a flat connection onJ1(L) [9]. Therefore, ifX is a compact Riemann surface of genus at
least two, then the above jet sequence does not split (as any holomorphic direct summand
of a flat vector bundle must be of degree 0 but the degree ofL is genus(X)− 1).

The above example shows that the isomorphismS in (5.2) cannot be extended as an
isomorphism (for dimensional reasons) for allk andi.

However, the allowed rangei /∈ [−2(k − 1),0] in Theorem 5.1can be marginally ex-
panded, which will be explained below.

Setj = −k andi = 2 in Theorem 5.1. So we have

H0(X,Diff kX(L
⊗−k,L⊗(k+2))) ∼= k+1⊕

l=1
H0(X,Ω⊗l

X ). (5.4)

Although, Theorem 5.1does not allowi = 0, the decomposition in(5.4) extends to a
decomposition

H0(X,Diff k+1
X (L⊗−k,L⊗(k+2))) ∼= k+1⊕

l=0
H0(X,Ω⊗l

X ). (5.5)

The above isomorphism is constructed as follows. Given a SL(V) structure onX, in [4] a
differential operator

D(k + 1) ∈ H0(X,Diff k+1
X (L⊗−k,L⊗(k+2)))

was constructed whose symbol is the constant function 1 (see[4, Theorem 4.1, p. 465]).
Given a differential operator

D ∈ H0(X,Diff k+1
X (L⊗−k,L⊗(k+2))),

its symbolσ(D) is a holomorphic function onX. The differential operator

D− σ(D)D(k + 1) ∈ H0(X,Diff kX(L
⊗−k,L⊗(k+2))).
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Consequently, the decomposition(5.4) for the differential operatorD − σ(D)D(k + 1)
gives the decomposition(5.5) for D. In other words, if

D− σ(D)D(k + 1) =
k+1∑
l=1

θl

by (5.4), whereθl is a holomorphic section ofΩ⊗l
X , thenD corresponds toσ(D)+∑k+1

l=1 θl
by the isomorphism in(5.5).

Remark 5.2. Let W be a holomorphic vector bundle overX equipped with a holomor-
phic connection∇. Since any holomorphic connection on a Riemann surface is flat, the
connection∇ induces a canonical isomorphism of vector bundles

Ji(W ⊗ E) ∼= W ⊗ Ji(E) (5.6)

for any i ≥ 0, whereE is any holomorphic vector bundle. The isomorphism in(5.6) can
be constructed as follows. For anyx ∈ X andw ∈ Wx, let ŵ be the (unique) flat section
of W , defined aroundx, such thatŵ(x) = w. Now for any holomorphic sections of E
defined aroundx, send the pair(w, s) to the holomorphic section̂w⊗ s of W ⊗ E defined
aroundx. Consider the element in(Ji(W ⊗ E))x defined byŵ ⊗ s. If s vanishes atx of
orderi+ 1, then clearlyŵ⊗ s also vanishes atx of orderi+ 1. Therefore,(w, s) 
→ ŵ⊗ s

induces a holomorphic homomorphism of vector bundlesW ⊗ Ji(E)→ Ji(W ⊗ E). It is
straight-forward to check that this homomorphism is an isomorphism.

Using the isomorphism in(5.6), Theorem 5.1gives

H0(X,Diff kX(L
⊗j ⊗W,L⊗(i+j+2k) ⊗ E)) ∼= k⊕

l=0
H0(X,L⊗i ⊗Ω⊗l

X ⊗ Hom(W,E))

wherei, j, k are as inTheorem 5.1. Similarly, (5.5)gives

H0(X,Diff k+1
X (L⊗−k ⊗W,L⊗(k+2) ⊗ E)) ∼= k+1⊕

l=0
H0(X,Ω⊗l

X ⊗ Hom(W,E)).

The notion of projective structure on a Riemann surface can be generalized to higher di-
mensions as follows. LetV be a complex vector space of dimension 2d + 2 equipped with
a nondegenerate anti-symmetric bilinear formθ ∈ ∧2V ∗. Let Sp(V) denote the group of all
linear automorphisms ofV preserving the symplectic formθ. SoG := Sp(V)/(Z/2Z) is a
simple group. LetP(V) denote the projective space parameterizing all lines inV . SoG acts
faithfully onP(V). LetM be a complex manifold of dimension 2d + 1. A holomorphic co-
ordinate function onM is a pair(U, φ), whereU ⊂ M is an open subset andφ : U → P(V)

is a holomorphic embedding. AG-structureonM is defined by giving a covering ofM by
holomorphic coordinate functions{(Ui, φi)}i∈I such that each transition functionφi ◦ φ−1

i

is the restriction of some automorphismTj,i ∈ G ⊂ Aut(P(V)) toφi(Ui ∩Uj). So ifd = 0,
then aG-structure is a projective structure on a Riemann surface.

Let M be a complex manifold of dimension 2d + 1 equipped with aG-structure. The
G-structure defines a holomorphic contact structureF ⊂ TM on M, whereTM is the
holomorphic tangent bundle ofM (see[5]). LetN := (TM/F)∗ be the holomorphic line
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bundle overM. We will denote byN ′ the complement of the zero section in the total space
of N. (Note thatN ′ is naturally identified with the complement of the zero section in the
dual line bundleN∗.) The complex manifoldN ′ has a natural holomorphic symplectic
structure. In[5], a canonical quantization of this symplectic manifold was constructed (see
[5, Theorem 4.2, p. 365]). As in the case ofd = 0, this quantization is constructed using
the Moyal–Weyl quantization of the symplectic structureθ onV .

Given a holomorphic sections of N⊗i, i ∈ Z, as before, we have holomorphic function
Γs onN ′ that satisfies the identityΓs(v) = 〈s(x), v⊗−i〉, wherex ∈ M is the projection of
v. For another holomorphic sectiont ∈ H0(M,N⊗j), consider

Γs�Γt =
∞∑
k=0

hkΨk,

where the�-product is with respect to the canonical quantization ofN ′ constructed in[5].
Now it is easy to check that the following version ofLemma 3.1is valid.

Modified version of Lemma 3.1. For anyk ≥ 0, there is a unique holomorphic section

u ∈ H0(M,N⊗(i+j+k))

such thatΨk = Γu.

Therefore, as in(4.4), sending anyt to u constructed above we obtain a holomorphic
differential operator

Sks (j) ∈ H0(M,Diff kM(N
⊗j, N⊗(i+j+k)))

of orderk onM.
The symbolσ(Sks (j)) of the differential operatorSks (j) is a holomorphic section of

N⊗(i+k) ⊗ SymkTM overM, where SymkTM denotes thekth symmetric power of the
tangent bundle.

The symmetric power of the natural projection ofTM toN∗ defines a homomorphism

f : SymkTM→ (N∗)⊗k.

Now let s′ be the holomorphic section ofN⊗i defined by the image ofσ(Sks (j)) in the
following composition of homomorphisms:

σ(Sks (j)) ∈ H0(M,N⊗(i+k) ⊗ SymkTM)
f−→H0(M,N⊗(i+k) ⊗ (N∗)⊗k)

∼= H0(M,N⊗i), (5.7)

whereN⊗(i+k) ⊗ (N∗)⊗k → N⊗i is the contraction ofN⊗k with its dual(N∗)⊗k.
As done inLemma 4.1, it can be shown that the above constructed sections′ ∈ H0(M,N⊗i)

is a constant scalar multiple of the sections that we started with.
In other words, using the quantization we are able to recover the image ofσ(Sks (j))

in H0(M,N⊗i) (for the composition homomorphism in(5.7)), but notσ(Sks (j)) itself. For
example, this construction of a differential operator from a symbol does not give a nontrivial
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differential operator if the symbol comes from the kernel of the composition homomorphism
in (5.7).

The key point in the decomposition of differential operators constructed inTheorem 5.1
is to be able to construct a differential operator from a given section of a tensor power of
L with the property that the symbol coincides with the given section. As we have shown
above, ifd ≥ 1 then from a given section of a tensor power ofN we are still able to
construct a differential operator, but the symbol of the differential operator in general does
not coincide with the given section. Consequently,Theorem 5.1and(5.5)proved ford = 0
do not generalize tod ≥ 1.
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